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Abstract—Consider a set of images of a scene captured from
multiple views with some missing regions in each image. In
this work, we propose a convolutional neural network (CNN)
architecture which fills the missing regions in one image using the
information present in the remaining images. The network takes
the set of images and their corresponding binary maps as inputs
and generates an image with the completed missing regions.
The binary map indicates the missing regions present in the
corresponding image. The network is trained using an adversarial
approach and is observed to generate sharp output images
qualitatively. We evaluate the performance of the proposed
approach on the dataset extracted from the standard dataset,
MYVS-Synth.

Index Terms—Image processing, Neural networks

I. INTRODUCTION

Often, it is desirable to capture a scene without any moving
objects present. However, in public places, it is common to
have people or objects moving around in the scene. To remove
these objects present in the scene, the corresponding regions
have to be filled appropriately. Let us assume that the regions
corresponding to these objects are provided by the user in
the form of a binary map in which O represents the regions
to be filled. We call them missing regions. There are several
single image completion techniques which take an image with
missing regions and generate a completed image ( [1]-[3]).
These techniques either exploit the input image statistics or
involve training on a huge amount of data to fill the missing
regions. However, in such cases, it is not necessary that the
missing regions would be filled by the same information which
was occluded by the objects. Capturing multiple images of the
same scene is a common practice. Hence, parts of the scene
which are occluded in one image can be visible in some other
image captured from the same or a different viewing angle.
Our main idea is to exploit this observation to fill the missing
regions present in the input image.

In this work, we propose a conditional generative adversarial
network (GAN) which takes a set of multi-view images along
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with their corresponding binary maps highlighting the regions
which need to be filled, as the input. Since we are dealing with
multi-view images, we have to make sure that the structure
is preserved while transferring information from one view
to the other and the output image has to be sharp without
any artifacts. Due to these reasons, we employ GAN [4].
The proposed network has two components: Image Warping
Network (IWN) and Image Completion Network (ICN). IWN
is responsible aligning the input set of images while ICN is
jointly trained with the discriminator in an adversarial manner
to obtain a sharp image as the output. We experimentally show
that warping the source images to the reference images help
the generator to produce better results. We show qualitatively
and quantitatively that the proposed approach performs better
than the single-image inpainting approaches [1], [2].

II. RELATED WORKS

Image completion has been an active area of research in
computer vision. Several methods have been proposed for
single image completion in which the input is an image with
some missing regions and the task is to fill them. In previous
works, many algorithms have been proposed which fill the
missing regions by utilizing the data from the remaining parts
of the same image [3], [5]-[7]. Recently, several learning
based methods based on GANs have been proposed which
are trained on a huge amount of data to generate sharp and
realistic images [1]-[3], [8].

Yeh et al. proposed a generative model based approach for
semantic image inpainting [9]. lizuka et al. proposed a gen-
erative adversarial network to perform the task for image
completion which uses two discriminators: local and global.
Global discriminator takes the complete generated image and
the local discriminator takes only the generated missing region.
Then, they together make the decision whether the input came
from training data or it is generated by the generator [1]. Liu
et al. utilized partial convolution to inpaint the irregular holes
present in the image. They also proposed a style loss which
helped in obtaining artifact-free results [3]. Recently, Yu et
al. proposed an attention based method which utilizes the sur-
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Fig. 1. The proposed network architecture. The proposed neural network architecture for multi-view assisted image completion. The proposed network

consists of two components: Image Warping and Image Completion Network.

roundings of the missing region as reference to perform image
completion [2]. Further, Ulyanov et al. proposed a technique
which does not rely on the external dataset training and use
the structure of generative models to perform inpainting [10].
These techniques rely on either the image statistics or the
model learned by training over millions of images.

There are works which use multiple views of a scene for the
task of inpainting [11]-[14]. Thonat et al. proposed a method
which utilizes a set of multi-view images as input and performs
multi-view inpainting such that it is consistent in all the images
[11]. Their method utilizes the multi-view 3D reconstruction
along with a global optimization technique. Later, Philip
and Drettakis introduced a plane-based multi-view inpainting
technique which exploits the local planar regions present in the
scene to obtain better multi-view inpainting results [14]. Li et
al. proposed a technique which performs multi-view inpainting
using an RGB-D sequence as the input [13]. However, they
are not learning-based methods.

III. PROPOSED APPROACH

The proposed network consists of two components: Image
Warping Network (IWN) and Image Completion Network
(ICN). Let us consider a reference image I, and a set of
n source images {Is}7_, with some missing regions. I,
and {I,}"_, are obtained by capturing the same scene with
different (or same) viewing angles. IWN takes I,. and {/}"_,
along with their corresponding binary maps as inputs. The
binary maps contain two values, 0 and 1. Here, O represents
the missing regions in the images and 1 represents the regions
which are present in the images. ICN generates a completed
reference image. Fig. 1 shows the visual representation of the
proposed architecture.

A. Image warping

Given I, and {Is}"_,, we synthesize a new image for each
I, by warping them in such a way that they align with I,.
The warping is achieved using the depth map D : RxR — R

of I, and the pose P, of the source image I;’s view
with reference to I,.’s view. Here, P,_,, is a 4 X 4 camera
transformation matrix (3-D rotation and 3-D translation). Zhou
et al. show that this process can be achieved in a fully
differentiable manner using CNNs [15]. They have proposed
a differentiable depth-based renderer which reconstructs the
reference image by sampling the pixel values of the source
image using D and P,_. They obtain the corresponding
location x4 of x, in I as shown in Eq. 1.

Ts ~ KPT—)SIZA)((ET)K_ICET (D

Here, z, and x, are the homogeneous coordinates of the
locations in I, and I, respectively. K is the intrinsic camera
matrix, D is the predicted depth map of I,., and PTHS is
the predicted camera transformation matrix. To obtain fs(mr)
using the values Ig(xs), a differentiable bilinear sampling
method is used [15]. Here, I, is the source image warped
to the coordinate frame of I,.

B. Image Warping Network (IWN)

The Image Warping Network consists of two components:
DepthNet and PoseNet. Let B, and {B,}7_, be the binary
maps corresponding to I, and {I,}"_,, respectively. Let I?
and {I’}"_, be the volumes obtained by concatenating I,
and {I;}"_, with B, and {Bs}"_; as their last channel,
respectively. DepthNet and PoseNet take I and {I°}"_; as
inputs and output the depth map D corresponding to I, and
{gs}"_,, respectively. Here, g5 is a 6-D vector corresponding
to Is. gs comprises three euler angles which are used to
compute the rotation matrix and the 3-D translational vector
for P,_,,. Then, the warped source images {fs}g:1 and their
corresponding warped binary maps {1?8}2:1 are obtained as
explained in III-A.

Architecture. The DepthNet has an encoder-decoder architec-
ture [16]. The encoder adapts the Resnet (50 layers) architec-
ture [17]. The depth is predicted in a multi-scale fashion [18].
PoseNet is a convolutional neural network which consists of



TABLE I
THE BUILDING BLOCKS USED IN DEPTHNET, POSENET AND ICN.

Layer Name | Layer Type | Kernel Dsltlr;g(e)/n In/Out
deony conv 3x3 1/1 In/Out
conv 3x3 1/1 Out/Out
conv 3x3 1/1 In/Out
upconv upsample % X % 1/- Out/Out
conv 3x3 /11 In/Out
pred Sigmoid - - Out/Out

conv ¥ 2/1 In/32

oconv conv 3x3 111 32/32
conv 3x3 1/1 32/0ut

TABLE II

THE DETAILED ARCHITECTURE OF THE POSENET. EACH CONVOLUTION
LAYER, EXCEPT CONV8 , IS FOLLOWED BY A RELU LAYER AND BATCH
NORMALIZATION LAYER.

Stride/

Name Type | Kernel Dilation In/Out Input
oconv() | oconv - -/- 4/16 I,
oconvl | oconv - -/- 4/16 I
oconv2 | oconv - -/- 4/16 Is
oconv3 | oconv - -/- 4/16 I3

conv2 conv 3x3 2/1 64/64 oconvO+oconv

+oconv2+oconv3
conv3 conv 3x3 2/1 64/64 conv2
conv4 conv 3x3 2/1 64/128 conv3
convS conv 3x3 2/1 1287256 conv4
convo conv 3x3 2/1 256/256 convS
conv7 conv 3x3 2/1 256/256 convo
conv8 conv 3x3 2/1 256/6*3 conv7
gpooll global - - 6*3/6%3 convb
avgpool

a series of convolution layers. Each convolution layer has a
stride of two. Each convolution layer is followed by the ReLU
activation function and a batch normalization layer, except the
final layer. Table I shows the building blocks used in IWN,
i.e., DepthNet and PoseNet, and ICN. Table II shows the
detailed architecture of PoseNet. Table III shows the detailed
architecture of DepthNet. The terms conv, avgpool, Sigmoid,
deconv, and global avgpool stand for convolution, average
pooling, sigmoid, deconvolution, and global average pooling
layer, respectively. res01, res02, res03 and res04 are the
four residual blocks used in ResNet (50 layers) architecture
[17]. upred3, upred4, upred5, and upred6 are the disparity
maps estimated at different scales. The reciprocal of upreds,
upred4, upredd, and upred6 are the depth maps at different
scales. The reciprocal of upred6 is the depth map D at the
scale of reference image. The output of gpooll is {gs}"_;.

C. Image Completion Network (ICN)

Let {ff 7_, be the volumes obtained by concatenating the
warped source images {fs};’:l with the corresponding warped
binary maps {B,}"_, along their last channel. ICN takes I?
and {I°}"_, as inputs. We concatenate I? and {I°}"_, along
the channels and pass them through ICN. The task of ICN is
to output the reference image with missing regions completed.
The regions are filled by utilizing the information present in
the warped source images.

Architecture. ICN is a fully convolutional neural network. It

TABLE III
THE DETAILED ARCHITECTURE OF THE DEPTHNET. EACH CONVOLUTION
LAYER, EXCEPT IN upred3, upred4, upred5, AND upred6, IS FOLLOWED
BY A RELU LAYER AND BATCH NORMALIZATION LAYER.

Stride

Name Type Kernel /Dilation In/Out Input
oconv( oconv - -/- 4/16 I,
oconvl oconv - -/- 4/16 I
oconv2 oconv - -/- 4/16 I
oconv3 oconv - -/- 4/16 I3

maxpooll | maxpool | 3 X 3 2/- 64/64 oconvO+oconv i+
oconv2+oconv3

resO1 ResBlock - -/- 64/64 maxpool I

res02 ResBlock - -/- 64/128 resO1

res03 ResBlock - -/- 128/256 res02
res04 ResBlock - -/- 256/512 res03
upconvl upconv -/- -/- 512/512 res04
convl conv | 3x3 | 11 |768/512 res03+
upconvl
upconv2 | upconv -/- -/- 512/256 convl
conv2 | conv | 3x3| 11 |384/256 res02+
upconv2
upconv3 upconv -/- -/- 256/128 conv2
conv3 conv [3x3 | 11 |192/128 resOl+
upconv3
upred3 pred -/- -/- 128/1 conv3
upconv4 | upconv -/- -/- 128/64 conv3
maxpool 1+
conv4 conv 3 x3 1/1 129/64 upconv4+
upred3
upred4 pred -/- -/- 64/1 conv4
upconv5 | upconv -/- -/- 64/32 conv4
convs conv [3x3| 171 33/32 ‘iﬁ;?ggi
upred5 pred -/- -/- 32/1 conv5
upconv6 upconv -/- -/- 32/16 conv5
convé conv | 3x3| 11 17/16 upconvé
+upred5
upred6 pred -/- -/- 16/1 convb

has an encoder-decoder architecture [16]. The encoder com-
prises a series of two 3 x 3 convolutions which are followed
by a ReLU, a batch normalization layer, and an average
pooling layer for downsampling. Then, we perform dilated
convolutions on it. The dilated convolutions help the network
to consider more spatial area to produce the output [1]. In the
decoder, the resolution of the feature maps is increased through
deconvolution. Table IV shows the detailed architecture of
ICN. T'anH stands for the hyperbolic tangent layer. In all our
experiments, we have used three source images, i.e., n = 3.

D. Discriminator

The discriminator network is trained to identify whether the

image is from the original distribution or it is generated by
ICN. It enables ICN to produce sharp images.
Architecture. The discriminator network has two parts: local
and global [1]. The global part takes the complete image
and the local part takes the image patch corresponding to
the filled region. For both the parts, we adapt ResNet (18
layers) architecture [17]. We remove their classification layer
and concatenate their outputs which is further passed through
a fully connected layer to make a prediction. The image and
the patch are both resized to 224 x 224 before passing them
through the discriminator.



TABLE IV
THE DETAILED ARCHITECTURE OF THE ICN. EACH CONVOLUTION
LAYER, EXCEPT CONV4, IS FOLLOWED BY A LEAKY RELU LAYER AND
BATCH NORMALIZATION LAYER.

Name Type | Kernel | Stride/Dilation | In/Out Input
dconvO | dconv - -/- 16/64 Images
downl down - -/- 64/128 dconv(Q
down2 | down - -/- 1287256 downl
down3 | down - -/- 256/512 down2
down4 | down - -/- 512/512 down3
convl conv | 3x3 172 512/512 down4
conv2 conv | 3x3 1/3 512/512 convl
conv3 conv | 3x3 1/4 512/512 conv2
deconvl | deconv | 2 X 2 %/ 1 512/512 conv3
dconvl | dconv - -/- 1024/256 | down3+deconvl
deconv2 | deconv | 2 X 2 %/ 1 256/256 dconvl
dconv2 | dconv - -/- 512/128 | down2+deconv2
deconv3 | deconv | 2 x 2 %/ 1 128/128 dconv2
dconv3 | dconv - -/- 256/64 | downl+deconv3
deconv4 | decony | 2 x 2 I 64/64 dconv3
dconv4 | dconv - -/- 128/64 | dconvO+deconv4
conv4 conv | 1x1 171 64/3 dconv4
tanhl Tanh - -/- 3/3 conv4
E. Training

We jointly train DepthNet and PoseNet, i.e., IWN, in an
unsupervised manner independent of ICN to obtain the depth
map D corresponding to the reference image I, and the poses
P,_,, corresponding to each source image I, [15]. We train
IWN to minimize the photometric loss [19] shown in Eq. 2 in
a multi-scale fashion [18].

n
l:w =\ Z HBb © (Io - Is)”l + >\2£smooth
s=1

n 2
+ A3 Z ||BS © (1 - SSIM(IO; fs))”l
s=1

Here, ©® is the Hadamard product, ||.||; is the ¢; norm, SSTM
is the structural similarity index [20], and I, is the ground truth
image for I, (i.e., the image we want to achieve as output). B,
is multiplied to ignore the missing regions present in warped
source images fs. L smooth 18 the £1 norm of the second-order
gradients for D [15]. A1, A2, and A3 are real constants. We
used Adam for the weight update with 5; = 0.9, 52 = 0.99,
and learning rate = 0.0001 [21]. After training IWN, we trained
ICN with the loss function £, shown in Eq. 3.

‘C.(] = HIO - Ing + 0.5 * 'Cperceptual (3)

Here, Lperceptual 15 the perceptual loss used in [3].

N-1 N-1
Lyerceptuat = Y [16(L) =01+ D 16(Log) — (L)1

n=0

“)
Here, I, is the ground truth image for the reference image
I, I, = G(I?,{I®}"_,) is the image generated by ICN,
and G is a function representing ICN. I,, is the generated
image I, with the missing region filled with the corresponding
region of the ground truth image. ¢(7) is the feature vector
obtained by passing the image I through the vggl9 network

n=0

[22]. We found that the perceptual loss helps in stabilizing
the training when trained with the adversarial loss. Training
ICN using £, produced images completed with information
which had significant blur. To produce sharper images, we
train ICN jointly with the discriminator using the min-max
approach proposed in [23] as shown in Eq. 5.

mci;nmgxlog(D(Io,pIO) +1log(1 — D(I4,p1,)) (5)

Here, I, = G(I?, {I*}"_)), p1, is the region in I, correspond-
ing to the missing region in I, and p;, is a patch extracted
from I,. D is a function representing the discriminator. To
produce sharp outputs, £, is combined with Eq. 5 as shown
in Eq. 6 [1].

mgn mgx/lg + M(log(D(Io, pr,) +log(1 — D(Iy,p1,))) (6)

Here, A4 is a constant. The discriminator D is trained to
identify whether the input came from the training data or it is
generated by the ICN. The generator G is trained to minimize
log(1 — D(Ig,pr,)). However, log(1 — D(I,,pr,)) does not
provide sufficient gradient for the generator and it saturates in
the early stage. Hence, the training of the generator becomes
poor. As suggested in [23], instead of training the generator
to minimize log(1 — D(Iy,pr,)), we train it to maximize
log(D(1g,p1,)). For the experiments, the values used for A,
A2, A3 and Mg are 0.15, 0.1, 0.85 and 0.2. For the weight
update of ICN, we used Adam with 5; = 0.5, B2 = 0.99, and
an initial learning rate = 0.0001 [21]. For the weight update
of the discriminator, we used stochastic gradient descent with
a learning rate of 0.01 and momentum of 0.9.

IV. EXPERIMENTS

Dataset. We have used MVS-Synth dataset used in [24].
It consists of 120 sequences of static urban scenes. Each
sequence consists of 100 images. We split the sequences into
two parts. We used the first 80% sequences for training and
the remaining for testing. In each split, we created sets of
four images by clubbing each image in each sequence with its
three consecutive images. During training, one of the images
in the set is used as I, and the other images are used as
the source images. We randomly insert missing regions in the
input images and compute their corresponding binary maps.
The width and height of the missing regions vary between 70-
120 pixels. The images and their corresponding binary maps
are resized such that the number of rows is equal to 256.

Results. In all the experiments, we have used three source
images, i.e., n = 3. We assume that the intrinsic parameters
of the camera are known. Fig. 2 shows the image completion
achieved using the proposed approach. It shows the results
on multi-view images of three different scenes from the test
split of the dataset when the corresponding image is taken
as the reference image and others as the source images.
The generated images are not only sharp but also have the
same information as that of the original scene. The previous
image completion works used a single image as the input
( [1], [2]). Since the proposed approach requires multiple



Fig. 2. Multi-view assisted image completion. The figure shows the results on multi-view image sets corresponding to three different scenes (two columns
each). In each set, first column shows the input multi-view image set with the missing regions and the second column shows the image completion obtained

by the proposed network when the corresponding image is taken as the reference image and others as the source images.

shows the image completion results obtained using the proposed approach
and their comparison with Lizuka et al. [1]. The first row shows the reference
images of four different multi-view image sets. The second row shows the
results obtained using Lizuka et al. [1]. The third and fourth rows show the
results obtained using the proposed approach and the corresponding ground
truth images, respectively. It can be seen that using the proposed approach
we are able to fill the missing region with the similar information as in the
actual scene which is not the case with [1].

views, we cannot train our network on datasets like Places2
[25] used in those works. Hence, a fair comparison is not
plausible. However, we have provided comparison with the
recent work by [1] in Fig. 3. In Fig. 3, we show the image
completion results obtained using the proposed approach and
their comparison with [1] trained on Places2 dataset [25]. It
can be seen that using the proposed approach we are able
to fill the missing region with the similar information as in
the actual scene which is not the case with [1]. Also, just
for reference, we have compared our results in terms of mean
f1 norm, mean /5 norm and PSNR with the state-of-the-art
single image completion method by [2] in Table V. The gpu
and cpu runtimes of the proposed model for an input image set
of size four are 0.75s and 7.3s, respectively. We implemented
the proposed network using PyTorch and performed all the
experiments on a system with Intel i7-5960X processor and
an Nvidia Titan X GPU.

LS LM

Fig. 4. Without IWN. The figure shows the comparison of the results
obtained using the proposed approach with the results obtained without using
IWN, i.e., by feeding the reference and the source images directly to the
ICN. The first and second columns show the reference images and the results
obtained without using IWN, respectively. The third and fourth columns show
the results obtained using the proposed approach and ground truth images,
respectively. It can be seen that the information filled in the missing region is
quite distorted when we do not use IWN in comparison to the results obtained
using the proposed approach.

. . Y - o T %

Fig. 5. Without ICN. The figure shows comparison of the results obtained
using the proposed approach with the results obtained using only IWN. The
first column shows the reference images. The second column shows the
results obtained using only IWN. The third and the fourth columns show the
results obtained using the proposed approach and the ground truth images,
respectively. It can be seen that the information filled in the missing region is
quite blurry when we only use IWN in comparison to the proposed method.

Ablation Study. We performed the following ablation studies.

1. Without IWN. In this study, we check the usefAulness
of TWN. Instead of passing the concatenated I” and {I°}"_,
through ICN, we trained ICN jointly with the discriminator



TABLE V
COMPARISON OF THE RESULTS OBTAINED IN [2] WITH THE RESULTS
OBTAINED USING THE PROPOSED APPROACH.

Method Dataset ¢1 norm | £2 norm | PSNR | SSIM
Yu et al. [2] Places2 8.6% 2.1% 18.91 -
Ours MVS-Synth | 4.44% 1.01% | 26.92 | 0.93

using 1% and {I°}"_, concatenated along the third dimension.
We found that the results were worse than using ICN along
with IWN. Fig. 4 shows the comparison of the results obtained
using the proposed approach with the results obtained without
using IWN. It can be seen that the completion without using
IWN is really poor (second column) in comparison to the
results obtained using the proposed approach (third column).

2. Without ICN. In this study, we checked the requirement
of ICN. Using the outputs of IWN and the warping technique
used in [15], we obtained {I,}"_,. Then using Eq. 7, we
obtained the completed image.

1 NP
n . Z Bs(p)Is(p)

. (N
;1 Bs(p) s=1

Io(p) =

Here, p represents the pixel locations where B,.(p) = 0. For
other pixel locations with B,.(p) = 1, I,(p) = I,.(p). We found
that the results were blurry in the filled region. Fig. 5 shows
the comparison of the results obtained using the proposed
approach with the results obtained using only IWN. It can be
seen that the information filled in the missing region is blurrier
(second column) in comparison to the results obtained using
the proposed approach (third column).

V. CONCLUSION

We propose a novel convolutional neural network architec-
ture for the task of image completion using multiple views.
Through ablation studies, we verified the importance of both
IWN and ICN. The image completion results achieved using
the proposed approach are sharp and artifact-free. They are
also consistent with the ground truth images. If some part of
the missing region of the reference image is not present in
any of the source images then for such regions, single image
inpainting techniques can be used to fill them ( [1]-[3]). As
a future work, we will explore the possibilities to incorporate
the task of single image inpainting in the proposed approach.

ACKNOWLEDGMENT

Gagan Kanojia was supported by TCS Research Fellow-
ships. Shanmuganathan Raman was supported by SERB Core
Research Grant and Imprint 2 Grant.

REFERENCES

[1] S. lizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally
consistent image completion,” ACM Transactions on Graphics, vol. 36,
no. 4, p. 107, 2017.

[2] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative
image inpainting with contextual attention,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1EEE, 2018.

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro,
“Image inpainting for irregular holes using partial convolutions,” arXiv
preprint arXiv:1804.07723, 2018.

A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 53-65, 2018.

A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Transactions on
Image Processing, vol. 13, no. 9, pp. 1200-1212, 2004.

I. Drori, D. Cohen-Or, and H. Yeshurun, “Fragment-based image com-
pletion,” vol. 22. ACM, 2003, pp. 303-312.

A. Criminisi, P. Perez, and K. Toyama, “Object removal by exemplar-
based inpainting,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, vol. 2. 1EEE, 2003, pp. II-IIL.

Y. Li, S. Liu, J. Yang, and M.-H. Yang, “Generative face completion,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3911-3919.

R. A. Yeh, C. Chen, T. Yian Lim, A. G. Schwing, M. Hasegawa-Johnson,
and M. N. Do, “Semantic image inpainting with deep generative
models,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 5485-5493.

D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 9446-9454.

T. Thonat, E. Shechtman, S. Paris, and G. Drettakis, “Multi-view
inpainting for image-based scene editing and rendering,” in International
Conference on 3D Vision (3DV), 2016.

S.-H. Baek, I. Choi, and M. H. Kim, “Multiview image completion with
space structure propagation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 488-496.

F. Li, G. A. G. Ricardez, J. Takamatsu, and T. Ogasawara, “Multi-view
inpainting for rgb-d sequence,” in International Conference on 3D Vision
(3DV). IEEE, 2018, pp. 464-473.

J. Philip and G. Drettakis, ‘“Plane-based multi-view inpainting for image-
based rendering in large scenes,” in Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games. ACM, 2018, p. 6.
T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 1EEE,
2017, pp. 6612-6619.

0. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234-241.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 1EEE, 2016, pp. 770-778.

Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth,
optical flow and camera pose,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 1983-1992.

C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 270-
279.

Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image
quality assessment: from error visibility to structural similarity,” /EEE
transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, 2015.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672—
2680.

P-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, “Deepmvs:
Learning multi-view stereopsis,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 1EEE, 2018, pp. 2821-
2830.

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places:
A 10 million image database for scene recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1452—
1464, 2018.



