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Abstract A scene can be divided into two parts: static

and dynamic. The parts of the scene which do not admit

any motion are static regions while moving objects cor-

respond to dynamic regions. In this work, we tackle the

challenging task of identifying dynamic objects present

in the CrowdCam images. Our approach exploits the

coherency present in the natural images and utilizes

the epipolar geometry present between a pair of images

to achieve this objective. It does not require a dynamic

object to be present in all the given images. We show

that the proposed approach obtains state-of-the-art ac-

curacy on standard datasets.

Keywords Object detection · Dynamic objects ·
Epipolar geometry

1 Introduction

Dynamic objects detection has been an active area of

research for a long time. The moving objects present

in the scene hold essential information about the scene.

This information is used in various applications like ac-

tion recognition, pedestrian detection, object tracking,

and 3D modeling of moving objects. Traditionally, these

tasks have been performed on video sequences. The

process is easier on video sequences as spatiotempo-

ral information is provided, but computationally more

expensive. Subsequently, researchers have moved on to
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perform these tasks using sparse samples of these videos,

i.e., images captured at certain intervals. We call them

an image sequence. An image sequence does not re-

quire a lot of memory to store, transmit, and process.

However, they pose certain challenges in matching, oc-

clusion, and deformations. Temporally speaking, they

are more difficult to process than videos in which the

spatiotemporal information is provided [27].

As explained in [10], CrowdCam images are the im-

ages of a scene captured by the crowd. Hence, a pair of

images can have a wide-baseline, and dynamic objects

can move a significant distance or even leave the scene.

These facts make them more challenging than dealing

with the videos. In this work, we are interested in two

kinds of regions present in a scene: static and dynamic.

Static regions correspond to those parts of the scene

which do not admit any motion whereas dynamic re-

gions correspond to the moving objects present in the

scene. A dynamic scene consists of objects in motion. In

some cases, these dynamic objects are the key sources

of information [6, 25]. While in others, they are consid-

ered outliers and need to be removed [2]. In both the

scenarios, the detection of dynamic objects is an essen-

tial task.

Consider images of a dynamic scene captured using a

handheld camera from different (or same) viewpoints.

Since we are dealing with CrowdCam images, image

pairs may have a wide-baseline. Due to dynamic ob-

jects and change in viewpoints, these images will not be

aligned. That will make it difficult to decide whether a

certain region is static or dynamic. Moreover, in these

images, dynamic objects do not satisfy the epipolar con-

straint. This constraint has been exploited in previous

works for the detection of dynamic objects [10]. In such

scenarios, the estimation of the fundamental matrix can

be noisy due to inaccurate matchings. Finding dense
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correspondences between pixel locations of a pair of

images are liable to errors as well. For these reasons,

relying only on one of them can lead to a significant

lowering in the quality of obtained results. In this work,

we present a patch-based technique which provides a

binary map, differentiating the static and dynamic re-

gions present in CrowdCam images. We combine the

information provided by the fundamental matrices and

the dense correspondences to improve the quality of re-

sults. We do not put any restriction on the movement

of dynamic objects across the images. Furthermore, we

do not restrict dynamic objects to be present in all the

images.

The primary contributions of our work are as follows:

1. We develop an algorithm which achieves state-of-

the-art results on the detection of dynamic objects

in CrowdCam images.

2. We exploit the image coherency present in natural

scenes along with the geometric relation between

the pair of images.

3. We show that even without using any geometric in-

formation and learning techniques, we can detect

the dynamic objects.

The rest of the paper is organized as follows. Section 2

discusses the relevant works. Section 3 describes our ap-

proach to detect dynamic objects present in the Crowd-

Cam images. Section 4 discusses the results obtained

using our approach and their comparison with a state-

of-the-art method. Finally, Section 5 presents the con-

clusion and future challenges ahead.

2 Related Works

Various approaches have been proposed to detect dy-

namic objects in different scenarios like object track-

ing [3, 8, 34, 29], photosequencing [6, 25], and motion

segmentation [33, 40, 29]. In [33], optical flow was es-

timated between the two images and then normalized

cuts was applied to segment dynamic objects. Later,

a joint estimation of optical flow and object segmen-

tation using variational methods was proposed [8, 9].

In [22], a variant of optical flow is used to detect the

lip event. Recently, some convolutional neural network

based techniques have shown state-of-the-art results for

such problems [13, 47, 26, 32]. A multitask deep net-

work is proposed to jointly detect humans and estimate

their head pose [46]. A survey of such techniques can be

found in [44]. However, these techniques work only on

video sequences. In the case of video sequences, tempo-

ral information can be exploited to find good matches

between the frames which can be propagated further

to detect the changes. In [45], the authors claim that

the proposed optical flow technique can handle large

displacements. However, our objective is not to track

dynamic objects in the given sequence. It is to identify

the dynamic regions present in the scene.

The other approach to detect dynamic objects is through

estimating the 3D structure of the scene given multi-

ple images captured using handheld cameras. In [41],

the dynamic scene is reconstructed using a pair of im-

ages. Since a pair of images of a dynamic scene can

not be related with a single projective transformation

technique, the authors of [41] have segmented dynamic

objects along with their 3D reconstruction using mul-

tiple motion models. This method relies on the esti-

mation of correspondences between dynamic objects

while our algorithm depends on the estimation of cor-

respondences between static parts of the scene which

are easier to obtain. We have made no such assumption

that dynamic objects have to be present in multiple

images. The works proposed in [10, 16] are the most

relevant to our work. In [16], the authors have segre-

gated the correspondences among dynamic objects and

static regions. However, they can not handle multiple

dynamic objects. The approach proposed in [10] over-

comes this drawback and can detect multiple dynamic

objects present in the scene. They have proposed the

concept of the epipolar patch in their work which uti-

lizes the epipolar geometry present between a pair of

images. There are certain drawbacks of using epipolar

geometry when dealing with natural scenes due to the

recurrence of patches [48]. A patch on a dynamic object

could get matched to a similar patch somewhere along

the epipolar line, or the object could have moved along

the epipolar line. In [11], the authors make use of the

epipolar geometry to predict the location of dynamic

objects in an image sequence.

3 Proposed Approach

Given a set ofN images of sizem×n of a dynamic scene,

our objective is to detect dynamic objects present in

each image. An image Ir is chosen as the reference im-

age in which we want to detect dynamic objects. Among

other N−1 images, those having sufficient overlap with

the reference image for the estimation of fundamental

matrices, are considered as source images. Let us as-

sume that there are k source images for the reference

image Ir. The approach for finding dynamic objects is

the same for each image. Hence, we demonstrate it for

one image. In this paper, we consider the top-left cor-

ner of an image as the origin and coordinates increase

as we move towards right and bottom respectively.



Patch-based Detection of Dynamic Objects in CrowdCam Images 3

Fig. 1 The figure shows 2 images each from some datasets
used in this work.

3.1 Fundamental Matrices

A set of fundamental matrices F is computed such that

F =

k⋃
s=1

Fs (1)

where, Fs is the fundamental matrix estimated between

the reference image Ir and the source image Is. There

are many efficient ways to estimate a fundamental ma-

trix [15, 18]. However, in the case of dynamic scenes, es-

timation of fundamental matrices are often noisy. Hence,

we can not rely entirely on them.

3.2 Confidence Map

The dense correspondence map Nr→s : R2 → R2, is

estimated for the reference image Ir with each source

image Is, where s = 1, 2, . . . , k. Finding a dense set of

correspondences between two images has been an ac-

tive area of research for a long time. Many approaches

have been proposed to address this problem. Among

these approaches, Generalized PatchMatch (GPM) [5],

Coherent Sensitive Hashing (CSH) [20], NRDC [17],

Sift Flow [21], and DeepFlow [43] are the most well

known. In this work, we are exploiting the coherency

present in the images which motivated the use of Gen-

eralized PatchMatch [5] as it exploits the coherency

to find the correspondences. CSH also exploits the co-

herency present in the scene and NRDC algorithm uses

PatchMatch [4] for initialization. Hence, they can also

be used to find dense correspondences. However, apart

from exploiting coherency, Generalized PatchMatch also

allows us to match arbitrary descriptors for finding the

correspondences. It allows us to find the correspon-

dences using arbitrary features instead of just using

the color values. In this work, we have computed the

dense correspondences by applying Generalized Patch-

Match on the feature vectors which are computed for

every patch at each location of the reference image Ir.

To quantify the measure of confidence associated with

each correspondence, we use the following confidence

map Conf (s) : R2 → R for each pair (Ir, Is), where

s = 1, . . . , k.

Conf (s)(i, j) = S(‖fr(i, j)− fs(Nr→s(i, j))‖2) (2)

where, i = 1, . . . ,m, j = 1, . . . , n, ‖.‖2 denotes the `2-

norm of the vector, and S(x) = e
− x2

2σ21 . Here, fr and

fs map the locations of the reference image Ir and the

source image Is to the corresponding feature vectors,

respectively. Hence, fr(i, j) is the feature vector at the

location (i, j) in the reference image, fs(Nr→s(i, j)) is
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the feature vector at the corresponding location of (i, j)

in the source image Is. We will see in section 3.3.2,

that the decision of whether a patch is static or dy-

namic depends on the clustering of feature vectors cor-

responding to the contender patch locations (section

3.3.1). Hence, by finding dense correspondence using

feature vectors, Generalized PatchMatch allows us to

be consistent with the notion of similarity throughout

the algorithm. In this work, we have used VLFeat im-

plementation of densely sampled SIFT features [23, 38].

3.3 Patch-based Detection of Dynamic Objects

We compute the labels, i.e., static or dynamic, at each

pixel location of the reference image in two orders. First,

from the top-left to the bottom-right corner in row-

major order and the second, in the reverse order, i.e.,

from the bottom-right to the top-left corner. At each

pixel location, we identify the contender patch loca-

tions (explained in 3.3.1) for the current location xr
in the reference image. Then, based on the contender

patch locations, the confidence maps and the funda-

mental matrices estimated between the reference image

and the source images, we decide the label, i.e., static or

dynamic, of xr (explained in 3.3.2). Finally, if xr is la-

beled as dynamic, we update the dense correspondence

map Nr→s(xr) so that xr is mapped to the probable

corresponding location of the occluded static region at

xr, in the source images (explained in 3.3.3). Algorithm

1 shows the pseudo-code for the proposed approach.

3.3.1 Contender Patch Locations

To decide whether a patch location xr = [i, j]>, where

i and j are the x and y coordinates in the reference im-

age, belongs to static or dynamic region in the scene,

we carefully select some locations in the source images.

We call these selected locations as the contender patch

locations C. If xr belongs to the dynamic object, then

these locations are the probable candidates for the near-

est neighbors of the occluded static region at xr in the

source images. First, we discuss the scan for top-left to

bottom-right corner. Let

x̂↓1 = (i− 1, j) (3)

x̂↓2 = (i, j − 1) (4)

where, x̂↓1 and x̂↓2 are the locations on left and above

the current location xr in the reference image Ir, re-

spectively, and

x↓1,s = (x↓1,s, y
↓
1,s) = Nr→s(x̂↓1) (5)

x↓2,s = (x↓2,s, y
↓
2,s) = Nr→s(x̂↓2) (6)

Algorithm 1 Patch-based Detection of Dynamic Ob-

jects

Input: Reference Image Ir, Source Images {I1, . . . Ik}
Output: Binary Mask label : R2 → {0, 1}
for s = 1→ k do

Find matches between Ir and Is
Estimate fundamental matrix Fs : Ir → Is
Compute dense correspondence map Nr→s

Initialize N↑
r→s = N↓

r→s = Nr→s

Compute the confidence Map Conf (s) (Section 3.2)

Initialize Conf ↑(s) = Conf ↓(s) = Conf (s)
end for
for h ∈ {↓, ↑} do

for i = 1→ m do
for j = 1→ n do

Find Ch for xr = [i, j]> (Section 3.3.1)
Construct A using Ch (Eq: 14,15)
Apply DBSCAN on A
Find f̄ for the cluster which has the maximum
value of ck (Eq: 17,16)
Find the values for l and g (Eq: 18,19)
Decide labelh(i, j) on the basis of P (xr) (Eq: 20)
if labelh(i, j) == 1 then

Update Nhr→s(xr) and Conf h(s)(xr),

∀s = 1, . . . , k (Eq: 22,23)
end if

end for
end for

end for
label = label↓ � label↑, where � denotes the element-wise
multiplication.

where, x↓1,s and x↓2,s are the locations of the nearest

neighbors of the patches on the patch locations x̂↓1 and

x̂↓2 in the source image Is, respectively.

C↓s = {C↓1,s, C
↓
2,s} = {(x↓1,s+1, y↓1,s), (x

↓
2,s, y

↓
2,s+1)} (7)

Here, C↓s is the set of locations on the right of x↓1,s and

below of x↓2,s in the source image Is, respectively.

Similarly, in the reverse scan, let

x̂↑1 = (i+ 1, j) (8)

x̂↑2 = (i, j + 1) (9)

where, x̂↑1 and x̂↑2 are the locations on right and be-

low the current location xr in the reference image Ir
respectively, and

x↑1,s = (x↑1,s, y
↑
1,s) = Nr→s(x̂↑1) (10)

x↑2,s = (x↑2,s, y
↑
2,s) = Nr→s(x̂↑2) (11)

where, x↑1,s and x↑2,s are the locations of the nearest

neighbors of the patches on the patch locations x̂↑1 and

x̂↑2 in the source image Is, respectively.

C↑s = {C↑1,s, C
↑
2,s} = {(x↑1,s − 1, y↑1,s), (x

↑
2,s, y

↑
2,s − 1)}

(12)
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Fig. 2 The figure illustrates the computation of the contender patch locations given the reference image Ir and source images
I1, I2, . . . , Ik. The first and the second row show the computation of contender patch locations in top-left to bottom-right (↓)
and bottom-right to top-left (↑) scan, respectively. The reference patch at xr = [i, j]> is shown with the green color in the
reference image Ir and its corresponding patch locations in the source images {Is}ks=1 are also shown with the same color. In

the first row, the patches at x̂↓
1 and x̂↓

2 in the Ir are shown with yellow and red color, respectively, and their corresponding

patch locations x↓
1,s and x↓

2,s in the source images {Is}ks=1 are also shown with the same colors. Similarly, in the second row,

the patches at x̂↑
1 and x̂↑

2 in the Ir are shown with yellow and red color, respectively, and their corresponding patch locations

x↑
1,s and x↑

2,s in the source images {Is}ks=1 are also shown with the same colors. The contender patch locations Chs in the
image Is are shown with the green box with the dotted edges, where h ∈ {↓, ↑} and s = 1, 2, . . . k. In this figure, the reference
patch belongs to the dynamic region.

Here, C↑s is the set of locations on the left of x↑1,s and

above of x↑2,s in the source image Is, respectively.

Ch =
k⋃
s=1

Chs (13)

where, h ∈ {↓, ↑}. Here, ↓ and ↑ signify the scan from

top-left to bottom-right and bottom-right to top-left,

respectively. The variables with ↓ as the superscript

are computed during the top-left to bottom-right scan,

while the variables with ↑ as the superscript are com-

puted during the bottom-right to top-left scan. If there

are k source images, then there would be 2k contender

patch locations. Fig. 2 illustrates the computation of

the contender patch locations given the reference image

Ir and the source images Is, where s = 1, 2, . . . , k. By

exploiting the coherency present in natural scenes, we

can consider that Chs is the set of the probable nearest

neighbor patch locations of xr in source image Is. For

example: if xL(s)
is the nearest neighbor of the patch on

the left of xr, then the patch on the right of xL(s)
should

be the nearest neighbor of xr. However, in the case

of CrowdCam images, this will be true for the planar

static regions but not on the boundaries of objects. This

would be dealt using the fundamental matrices as ex-

plained in 3.3.2. After deciding the contender patch lo-

cations, the rest of the steps are independent of whether

we are going from top-left to bottom-right or vice versa.

Hence, we will drop the {↑, ↓} symbols in the upcoming

sections.

3.3.2 Labelling

The contender patch locations of xr correspond either

to the location of the static region corresponding to the

xr or some other (or the same) dynamic object occlud-

ing the static region in the corresponding source image.

Being a probabilistic approach, it is assumed that the

static region corresponding to xr is not occluded in a

sufficient number of images.

As = {f1,s,f2,s} = {fs(C1,s), fs(C2,s)} (14)

Here, fs maps the locations of the source image Is to

the corresponding feature vectors (section 3.2) and As
is the set of feature vectors f1,s and f2,s corresponding
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to the contender patch locations C1,s and C2,s in the

image Is.

A =

k⋃
i=1

As (15)

Here, A is the set of feature descriptors corresponding

to the contender patch locations. For feature descrip-

tors, there can be many choices. The simplest choice

would be to take a patch of p × p at each contender

patch location. Then, either vectorize its intensity val-

ues or create a histogram of intensity values to use it

as a feature vector. However, they do not perform well

when it comes to matching in the images captured with

significant difference in the viewpoints. In this work,

we experimented with different feature descriptors like

DAISY [37], OTC [24] ,and dense SIFT [23, 38]. The

overall performance of dense SIFT was better in our

case. Hence, in this work, we have used dense SIFT as

the feature descriptor computed for a patch of size p×p.
We have used p = 32 in all our experiments.

Now, we apply DBSCAN on the feature descriptors of

A [14]. DBSCAN is robust to outliers and in our case,

we do not know the number of clusters. This is due to

the fact that, apart from the static part, there can be

multiple dynamic objects occluding that static part in

the source images. The feature vectors corresponding

to dynamic objects and the static regions will fall into

different clusters. Consider that DBSCAN outputs Φ

clusters i.e., E1, E2, . . . , EΦ. Then, we calculate the ag-

gregated confidence cφ associated with the φth cluster

using the confidence map.

cφ =
∑

fg,s∈Eφ

Conf (s)(x̂g) (16)

where, s = 1, . . . , k, φ ∈ {1, . . . , Φ} and g ∈ {1, 2}. The

reason behind using the confidence values Conf (s)(x̂g)

is that the confidence of a contender patch location to

be a candidate for xr = [i, j] depends on how confi-

dently the neighboring features of the contender patch

location and xr are matched (neighbors depend on the

order of the current scan). In accordance to the as-

sumption that the static region corresponding to xr are

not occluded in a sufficient number of images, the loca-

tions belonging to the static region would be matched

with high confidence and would be sufficient in num-

ber. Hence, the most confident cluster would refer to

the patches belonging to the static region. Now, the

weighted mean value of the features, i.e. f̄ , of the most

confident cluster is calculated.

f̄ =
1

ci

∑
fg,s∈Ei

Conf (s)(x̂g)fg,s (17)

where, ci = max({c1, c2, . . . , cΦ}) and i is the index of

the maximum value. The probability of xr to be a static

location based on the contender patch locations is

l(xr, C) = e
−
‖fr(xr)− f̄‖22

2σ2
2 . (18)

The above equation says that the probability of the

reference location xr to belong to the static region de-

creases as fr(xr) moves away from the centroid of the

most confident cluster. The probability of xr to be a

static location based on the fundamental matrices is

g(xr,xs,F) = S

(
1

Z

k∑
s=1

Conf (s)(xs)d(xr,xs)

)
(19)

where,
xs = Nr→s(xr),∀s = 1, . . . , k,

Z =
∑k
s=1 Conf (s)(xs),

d(xr,xs) =
xsFsx

T
r

(Fsx>r )21 + (Fsx>r )22 + (xsFs)21 + (xsFs)22
,

and S(x) = e
− x2

2σ23 .
Here, d(., .) is the Sampson distance [18]. g is the weighted

average of the sampson distance between the reference

patch location xr and its corresponding locations xs in

the source images {Is}ki=1. If xr belongs to the static re-

gion, then the corresponding patches will lie very close

to the epipolar line corresponding to xr in the source

images. This is not necessarily true if xr belongs to the

dynamic region. As we have already pointed out in the

beginning of this section, it is a probabilistic approach.

Hence, the probability of xr to belong to the static

region will be more if its corresponding points in the

source images lie close to epipolar lines and vice versa.

Ideally, the static points should have d(xr,xs) = 0.

However, since the estimation of fundamental matrix

can be noisy, such hard constraints will not always get

satisfied.

In order to decide the label of xr, we define an energy

function P .

P (xr) = (1− w(xr))l(xr, C) + w(xr)g(xr,xs,F) (20)

where, w(xr) ∈ [0, 1]. Here, w is a function of xr which

weights the contribution of the l and g towards the

decision. As pointed out in the previous section, the

coherency can be exploited in the planar regions. While

at the boundaries of the objects, the reasoning behind

the contender patch locations may not hold. In that

case, w(xr) puts more weight on g than l. In this work,

we have used the edge detection technique presented

in [12]. If a patch p around xr contains an edge, then
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the value of w(xr) is we, otherwise its value is wp. The

label of the xr is decided as follows:

label(xr) =

{
0, if P (xr) > th

1, otherwise
(21)

where, 0 stands for the static region and 1 stands for the

dynamic region. Here, th is a hyper-parameter which

bounds the minimum energy required for a location to

belong to a static region.

3.3.3 Update

If the location xr is labeled as static, then we move

on to the next location. However, if the location xr is

labeled as dynamic, then we update its nearest neighbor

mapping and confidence map as follows:

Nr→s(xr) = Cg,s (22)

Conf (s)(xr) = Conf (s)(x̂g) (23)

where s = 1, . . . , k. The value of g is such that

Conf (s)(x̂g) = max(Conf (s)(x̂1),Conf (s)(x̂2))

and the value of i is such that ci = max({cφ}Φφ=1) i.e.,

the most confident cluster index.

After computing the binary map, label↓ and label↑

for both the scan orders respectively, the final binary

map label is computed as follows:

label = label↓ � label↑ (24)

where � denotes the element-wise multiplication.

4 Results and Discussion

4.1 Datasets

For the evaluation of the proposed algorithm, we have

used the playground, basketball and skateboard datasets

used in [6], rock-climbing dataset used in [28], toy-ball

dataset captured by [10], tennis dataset used in [7],

and few scenes from DAVIS dataset [31, 30]. DAVIS

dataset contains the video sequences. Hence, we have

picked the frames at sufficient intervals in such a way

that the alternate images have sufficient overlap for

the estimation of fundamental matrices while keeping

the detection challenging. Out of 90, 87, 86, 35, 70,

and 80 images from bmx-bumps, boxing-fixeye, dog-

gooses, rollerblade, paragliding, and car-turn scenes of

the DAVIS dataset, we have picked 9, 11, 8, 6, 8, and 9

images respectively. Fig. 1 shows two images each from

some of the datasets used. All the datasets involve cam-

era motion and object motion. The datasets cover the

scenes which contain single or multiple dynamic ob-

jects.

Dataset Dafni et al. [10] Ours
Skateboard 0.42± 0.1 0.5± 0.007
Basketball 0.47± 0.04 0.51± 0.0004
Climbing 0.13± 0.05 0.34± 0.03

Playground 0.32± 0.11 0.365± 0.012
Toy ball 0.6± 0.03 0.44± 0.04

Table 1 The table shows the comparison between Dafni et
al. [10] and our proposed approach in terms of Jaccard index.

4.2 Evaluation

We have compared our results with the state-of-the-art

method proposed in Dafni et al. [10]. We have computed

the Jaccard Index, which was used in [10], for our re-

sults over the datasets and provided the comparison in

Table 1.

J(A,B) =
|A ∩B|
|A ∪B|

(25)

where, J is the Jaccard index and A and B are the

two sets among which the similarity needs to be esti-

mated. In our case, A is the ground truth mask and B

is the mask obtained using our approach. We have used

the VLFeat implementation of dense SIFT [23, 38] for

the feature descriptors. We normalized these features

by dividing them by their maximum value for the given

set. The values of σ1, σ2, σ3, we, and wp used for all

the datasets are 0.35, 0.45, 20, 0.5, and 0, respectively.

The threshold used in DBSCAN for all the datasets is

0.1. The value of th is in the range of 0.5 to 0.75. We

have performed the experiments with different values

of the parameters and these are the values which gave

the overall best performance over all the datasets. The

value of th is the same for all the images in a dataset.

Hence, we have compared the Jaccard index computed

on our results with the Jaccard indices in [10] for the

optimal threshold per set. Fig. 3 shows the comparison

of results on skateboard dataset obtained in [10] with

our results. It can be seen that we have obtained bet-

ter true positives as compared to [10]. In Fig. 3, (a) and

(b) show the binary map and corresponding highlighted

region in the image obtained in [10]. In Fig. 3, (c) and

(d) show the binary map and corresponding highlighted

region in the image obtained using our approach. Simi-

larly, we compare our results on some of images of bas-

ketball, climbing, toy ball, and playground datasets in

Fig. 4, Fig. 6, and Fig. 5, respectively. In Fig. 6, it can

be seen that not all the dynamic objects have been de-

tected. Those dynamic objects have hardly moved in

the whole image sequence which made the algorithm to

consider them as the static objects. In Fig. 7 and Fig.

8, the results obtained on bmx-bumps, boxing-fixeye,

rollerblade, dog-gooses, and tennis datasets using our

approach are shown. The results in Fig. 7 are obtained
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(a) (b) (c) (d)

Fig. 3 The figure shows the comparison between the results obtained on skateboard dataset using [10] and our approach. The
first row shows the input image stack. (a) and (b) show the mask and the corresponding highlighted region obtained in [10]
while (c) and (d) show the mask and the corresponding highlighted region obtained using our approach.

Fig. 4 The figure shows the comparison on the basketball dataset. The first row shows the input set of images. The second
and third row show the results obtained in [10] and using our approach, respectively.
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(a) (b) (c) (d)

Fig. 5 The figure shows the comparison on 2 images of toy ball and playground dataset each. The first two rows show the
comparison on the toy ball dataset while the third and the fourth row show the comparison on the playground dataset. The
masks and the corresponding highlighted region shown in (a) and (b) are obtained in [10] while the masks and the corresponding
highlighted region shown in (c) and (d) respectively are obtained using our approach.

Fig. 6 The figure shows the comparison on the climbing dataset. The first row shows the input image stack. The second and
the third row show the results obtained in [10] and our approach respectively.
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(a) (b) (c) (d) (e)

Fig. 7 The figure shows the results obtained on (a) bmx-bumps, (b) boxing-fixeye, (c) rollerblade, (d) dog-gooses and (e)
tennis dataset using our approach. The results are obtained by making use of both the coherency and the epipolar constraint.

(a) (b) (c) (d) (e)

Fig. 8 The figure shows the results obtained on (a) bmx-bumps, (b) boxing-fixeye, (c) rollerblade, (d) dog-gooses and (e)
tennis dataset using our approach. These results are obtained purely by exploiting the coherency present in the scenes i.e.,
w(xr) = 0 for all values of xr (Eq. 20).
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(a) (b) (c) (d)

Fig. 9 The figure shows the result on car-turn dataset. (a) and (b) show the mask and the corresponding highlighted region
obtained using the proposed approach considering both the coherency and the epipolar geometry. (c) and (d) show the mask
and the corresponding highlighted region obtained using the proposed approach while relying only on the coherency present
in the scene i.e., w(xr) = 0 for all values of xr (Eq. 20).

(a) (b) (c) (d)

Fig. 10 The figure shows the result on paragliding dataset. (a) and (b) show the mask and the corresponding highlighted
region obtained using the proposed approach considering both the coherency and the epipolar geometry. (c) and (d) show
the mask and the corresponding highlighted region obtained using the proposed approach while relying only on the coherency
present in the scene i.e., w(xr) = 0 for all values of xr (Eq. 20).
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by making use of both the coherency and the epipo-

lar geometry. In Fig. 8, the results are obtained purely

by exploiting the coherency present in the scenes i.e.,

w(xr) = 0 for all values of xr. Here, xr refers to the

locations in the reference image (Eq. 20). It can be seen

that even without using any geometric information, we

are able to segregate dynamic objects and the static re-

gion. In Fig. 9 and Fig. 10, we show that the obtained

results are better in the case where we have only relied

on the coherency present in the scene. In Fig. 9 and

Fig. 10, (a) and (b) show the mask and the correspond-

ing highlighted region obtained using the proposed ap-

proach on the car-turn and paragliding datasets. These

results are obtained while considering the coherency

and the epipolar geometry. In Fig. 9 and Fig. 10, (c) and

(d) show the mask and the corresponding highlighted

region obtained using the proposed approach while re-

lying only on the coherency present in the scene. This

could have happened due to the drawbacks of using

epipolar geometry discussed in the Section 2 and the

domination of the geometric term over the coherency

term.

Fig. 11 Images from Toy ball dataset.

4.3 Limitations

The values of σ1, σ2, th, and the threshold used in DB-

SCAN algorithm are obtained empirically through ex-

periments and these values are sensitive to the choice

of feature descriptors. The objects with hardly any mo-

tion throughout the image sequence are labeled as static

objects. This could be addressed using the semantic in-

formation about the scene. However, we have prevented

ourselves from using any semantic information in this

work. It can seen in Table 1, that the proposed algo-

rithm does not perform better in the case of toy ball

dataset. The scene in the toy ball dataset contains lots

of texture and the camera is quite near to the objects

which lead to the significant change in appearance dur-

ing the camera motion. Hence, even the corresponding

patches has significant difference among their features.

We will address these limitations in the future work.

5 Conclusion and Future Work

We have developed a novel approach to detect dynamic

objects present in the CrowdCam images. We exploit

the coherency present in the scene along with the epipo-

lar geometry between the pair of images. The proposed

approach can handle complex scenes. This can be seen

in the results obtained using our approach. The pro-

posed approach does not require tracking a dynamic

object or finding accurate matches over dynamic ob-

jects. It relies more on the matches produced in the

static regions which are easier to obtain.

The updated nearest neighbor fieldsN h
r→s, ∀s = 1, . . . , k

and h ∈ {↓, ↑}, contains the information regarding the

corresponding location of the occluded static region in

the source images which can be used to remove dynamic

objects. Fig. 12 shows the removal of a dynamic object

from a scene captured using a static camera. In the case

of a static camera, we rely only on the coherency i.e.,

w(xr) = 0 for all values of xr, where xr refers to the

locations in the reference image (Eq. 20). We replace

the pixel value at each location of the dynamic region

(shown in the second row of Fig. 12) with the pixel

value of its most confident nearest neighbor location.

This neighbor location is obtained using the updated

nearest neighbor maps and the confidence maps. How-

ever, due to camera motion, it is not an easy task in

case of handheld cameras. We would like to address this

problem in our future work by decoupling the camera

motion and the motion of different objects with the help

of the proposed algorithm. We further want to nullify

the perspective deformation caused due to the camera

motion on the source images with respect to the ref-

erence image. Following which, we apply the proposed

algorithm and update the pixel values of the dynamic

region as done in Fig. 12. We would also like to explore

the possibility of utilizing super-pixels [1] or object-level

segmentation [19, 42] in order to reduce the computa-

tional complexity and further improve the quality of

the results [39, 36, 35].
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