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Abstract. Consider a set of images corresponding to a dynamic scene
captured using multiple hand-held cameras. Assuming that we do not
have any other information about the camera settings and the dynamic
scene, we would like to identify the cameras which captured each of these
images. Further, we would like to estimate the order in which these im-
ages were captured by each of the cameras. We address this challenging
problem using principles derived from multiple view geometry and un-
supervised learning techniques. We show that the camera identification
problem can be modelled as clustering of the affine camera matrices esti-
mated from the images. We show that homography estimation from the
static regions of the scene enables us to order the images captured by
each camera individually. Apart from discussing the advantages of the
proposed approach, we conclude the paper providing the limitations of
the approach and future directions.

1 Introduction

Analysing a dynamic scene captured using a hand-held camera is of great inter-
est to computer vision and computer graphics community recently. This interest
is due to the emergence of mobile phone cameras with high spatial and tem-
poral resolutions. A natural scene is often dynamic as objects can change their
positions when one captures multiple images of the scene at different time in-
stants. The motion of the objects can be estimated using traditional optical flow
techniques if the camera is placed on a tripod and the object motion is not too
large [1]. This scenario does not arise when hand-held cameras in the mobile
phones and other digital devices are used to capture the dynamic scene over
time.

Suppose a dynamic scene is captured by multiple persons with hand-held
cameras, inferring the camera which shot each of the images is a challenging
problem. Recent algorithms such as photo sequencing [2] have assumed that
both this information and the order in which the images were shot by each
camera are known. This is a very strong constraint which restricts the use of
these algorithms in practical situations. Also, given a sequence of ordered images
from a single camera the ascending or descending order can only be determined
with additional learning [3].

In this work we provide an unsupervised algorithm, to not only predict the
source of each of the images but also order them in the captured sequence. This



solution requires us to understand and develop an algorithm with principles from
the multiple view geometry. The proposed approach is extended to localize the
changes caused due to moving objects in each of the images corresponding to a
camera with respect to a reference image. The major contributions of the work
are listed below.

1. Given m images of a dynamic scene captured using n hand-held cameras we
are able to assign these images correctly to each of the n cameras.

2. Suppose αi be the number of images assigned to the ith camera. We devel-
oped an algorithm to arrange these αi images in the order in which they
were shot by the ith camera.

The rest of the paper is organized into the following sections. Section 2
discusses the work related to the proposed approach and the techniques used
therein. Section 3 explains the proposed approach in detail(Figure 1). Section 4
presents the results and discussions for various dynamic scenes captured using
varying number of cameras. Section 6 presents the summary of the proposed
approach and possible directions to improve it in future.

2 Related Work

The works very closely related to the application we address are photo sequenc-
ing [2] and seeing the arrow of time [3]. The work by Basha et al. on photo
sequencing introduces an approach to time sequence a set of images of a dy-
namic scene captured using multiple cameras. This work focuses on ordering
the images captured by multiple cameras in a single sequence in the common
time frame in which they were shot. Apart from assuming information regard-
ing which camera shot which picture, this work also assumes that we have at
least two images captured by the same camera from a fixed location. A more
recent work addresses this problem by just assuming that the images shot by
each camera and their ordering in which they were shot are known [4]. Both
these works do not predict whether the arrangement of images on a common
time frame is ascending or descending. This can be estimated using supervised
learning on various video sequences as proposed in [3].

One of the commonly used algorithms developed for the purpose of interest
point detection and description is the scale invariant feature transform (SIFT)
algorithm [5]. After SIFT, there have been other related algorithms developed
for addressing the interest point detection and description task [6]. Another
commonly used feature descriptor is the speeded-up robust feature (SURF) al-
gorithm [7]. The objects which are non-rigid can be matched across 2 images
using the non-rigid dense correspondence (NRDC) algorithm better than SIFT
and SURF descriptors [8]. In the present work, we use NRDC to match features
between the images.

Alignment of successive frames in a video sequence by matching spatial fea-
tures over time is a common task in different computer vision applications [9].



Fig. 1. The Proposed Approach - Who shot the picture and when?

This problem has been extended to videos captured using different unsynchro-
nized, non-stationary cameras. The registration process is challenging and has
been addressed by a recent work [10]. In the present work, we address the prob-
lem of alignment of images captured using multiple non-stationary cameras.

Consider a static scene captured by multiple cameras separated in space.
The position of the camera and the structure of the objects in the scene can be
estimated jointly using factorization methods [11]. The cameras can be assumed
to be either projective or affine. The affine assumption simplifies the factorization
algorithm [12]. Images captured using hand-held cameras can be used to model
3D scenes by using factorization methods [13].

3 Proposed Approach

In this work, we deal with the images captured using multiple hand-held cameras
from different positions. We assume that we know neither the sequence in which
the images are captured nor the cameras using which they are captured. Global
registration of these images is not feasible as the scene is dynamic [14]. In the
case of a dynamic scene, the interest points in the images of the scene can be
classified into static and dynamic. If we can achieve this task, the static and
dynamic interest points present can be processed independent of each other.

3.1 Identification of Static Interest points

We observe that there will be two kinds of regions in any given image from the
set of images - static and dynamic. The interest points computed in the image
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Fig. 2. (a,b) Two images of a dynamic scene, (c) Features matched between images in
(a) and (b).

should fall into one of these regions. Consider any two images of the scene and
the feature correspondence for all the interest points in the two images. It can
be observed that we can predict that all the points in the images corresponding
to static regions in the scene will be shifted in the same direction between these
two images (see Figure 2(c)). Our objective is to segregate those interest points
which exhibit motion in a single direction from the rest. To achieve this, we
further assume that the number of dynamic interest points in a given image is
considerably less compared to the static interest points.

Consider a dataset of m images of a dynamic scene captured using n hand-
held cameras. To start with, consider one image from this set of images as the
reference image. We shall compare the remaining (m − 1) images with respect
to the reference image. For each of these (m − 1) images we estimate NRDC
correspondence with respect to the reference image (see Figure 2) [8].

Consider that there are ki (i = 1, 2, . . . ,m − 1) matched points for each of
the (m − 1) images with respect to the reference image. For each of these ki
matched points, we calculate the displacement vector and store them in matri-
ces Ai of dimension ki×2, where (i = 1, 2, . . . ,m−1). We perform singular value
decomposition (SVD) on these matrices Ai [15]. SVD of matrices Ai are given
by the equation Ai = UiΣiVi

T . The singular values σi1 and σi2 represent the
variation in two different directions. As we have initially assumed that the num-
ber of dynamic interest points in the scene are much less compared to the static
interest points, so the static interest points should represent the most significant
variation in the unit displacement vectors. So we replace σi2 with zero and form
a set of new diagonal matrices Σ′i. We reconstruct the matrices A′i using only
the dominant singular values as given by the equation, A′i = UiΣ

′
iVi

T .

These matrices capture information only about the most prominent displace-
ment direction (assumed to be static). From the normalized estimated matrix
A′′i we compute the magnitudes of the displacement in a vector |Ai′′| of size ki.
From |A′′i |, we calculate the average displacement magnitude using equation 1.
Let a′i,j be the jth element in the vector A′i.

a′′i,j =
a′i,j
|a′i,j |

, |A′′i | =
∑ki
j=1 |a′′i,j |
ki

(1)



where a′′i,j is the jth element in the vector A′′i . We consider only those displace-
ment vectors from A′i whose magnitude of difference with the average displace-

ment vector |A′′i | is less than a small real number ε. We form new matrices
corresponding to static interest points (Si) using equation 2.

Si,j =

{
Ai,j ||a′i,j | − |A′′i || < ε
0 otherwise

(2)

where Si,j and Ai,j correspond to the jth rows of the matrices Si and Ai
respectively. We choose the parameter ε empirically to be a very small real
number. In the matrices obtained through equation 2, all the non-zero rows
correspond to the interest points present in the static region of the image. We
will exploit these static interest points in order to recover the n camera matrices.

3.2 Who took the picture?

Having found out the static interest points in each of the m images, we need
to recover the camera matrices corresponding to each of these images. We shall
assume that the underlying camera matrices for these n cameras are affine. The
first step is to find the static points which are common to all the m images
which are estimated iteratively. Let the number of common static interest points
estimated be β. For recovering the n affine camera matrices we require that the
number of common interest points β to be greater than or equal to 4, as it is
the minimum requirement to perform affine factorization. We then calculate the
centroids of all the points in each of the images using the equation 3.

ti =

∑β
j=1 xi,j

β
,xi,j = (xi,j , yi,j)

T (3)

where ti are the centroids of all the static interest points estimated for the
ith image.

We subtract these centroids from the corresponding static interest points
extracted from each of the m images using the equation x̃i,j = xi,j − ti, where
x̃i,j are the normalized interest points in the ith image and j = 1, 2, . . . , β.

With the normalized coordinates corresponding to β matched points in each
of the m images, we generate a matrix W with dimensions 2β×m. We use SVD
to decompose this matrix W as shown in equation 4.

W = UWΣWV
T
W (4)

where UW is of dimension 2β × 2β, ΣW has dimensions 2β ×m and V TW has
dimensions m×m.

Part of the affine camera matrices (Mi) are generated by multiplying the first
three columns of UW with the first three singular values of ΣW [11]. Now Mi and
ti represent the affine camera matrix corresponding to the ith image with the
third row being (0, 0, 0, 1). We form a 8 dimensional vector for each image by



augmenting the first two rows of estimated the affine camera matrix to form a
feature descriptor. Therefore, we have an eight dimensional feature descriptor for
each of the m images. We will apply clustering algorithm to group these feature
descriptors into n clusters. These n clusters represent n different cameras. In this
work, we use K-means clustering to achieve this task assuming that the number
of cameras n is known [16]. This enables us to identify the camera which shot
each of the m images. After clustering we obtain αi which represent the set of
images captured from the ith camera (i = 1, 2, . . . , n).

3.3 Identification of Dynamic Interest Points

There are sets of coordinates corresponding to all the interest points stored in
the matrices Ai. The matrices Si are extracted from matrices Ai by selecting the
coordinates of the interest points present in the static regions. Those points in
the matrices Ai which have not been accounted for in matrices Si will represent
the interest points corresponding to dynamic regions of the scene. This is due to
the fact that we consider only the matched interest points which have been given
high confidence value by the NRDC algorithm. This also enables us to get rid of
any false matches or outliers. We form matrices Di which capture all the points

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 3. (a-o) Images of a dynamic scene captured using two cameras.

which are present in Ai but not in Si. From the set of displacement vectors in
Di we retain those displacement vectors whose slopes differ significantly from
the average slopes computed from the matrices Si. This process enables us to
retain only those displacement vectors in Di which most probably correspond to
dynamic regions of the scene.



3.4 When?

Having classified the images captured by each of the n cameras, our next task is
to arrange them in time sequences. In the absence of accurate depth information
of the scene, two images of a static scene captured using the same camera at
different positions can be related using a homography matrix as shown in the
equation x2 = H3×3x1, where x1, x2 are the homogeneous representations of the
points in the first and second images respectively and H3×3 is the homography
matrix or 2D projective transformation matrix relating the two images.

We pick one out of the αi images captured from each camera as the reference
image. We compute the homography matrices Hi by using the static interest
points Si of rest of the (αi − 1) images with the corresponding static interest
points of the reference image [11]. This process is repeated for all the cameras.
Now we will have a set of (αi − 1) homography matrices Hi for the images cap-
tured by the ith camera. We employ these homography matrices on the dynamic
points present in the matrices Di to bring them to the same coordinate frame.
We plot the homography transformed dynamic points on a separate image grid
for each of the cameras. If we plot either a line or a polynomial curve through the

Fig. 4. Estimated curve through dynamic points which depict the sequence of captured
images by camera 1.

homography transformed dynamic points, we can estimate the dynamic points
which are closest to this fitted curve in the least squares sense. By tracing along
the fitted curve, we will be able to order the projected dynamic points obtained
from the various images. Classifying the motion as either ascending or descend-
ing (arrow of time) is a challenging task which requires us to use supervised
learning techniques [3].

We shall present the various experiments we conducted using the proposed
approach and justify the effectiveness of the proposed approach using results
obtained by processing different datasets.
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Fig. 5. (a-i) Images of a dynamic scene captured using two cameras.

4 Results and Discussion

Consider the dataset consisting of 15 photos captured by two cameras as shown in
Figure 3 [2]. Here m = 15 and n = 2. We need to determine the images belonging
to two different clusters corresponding to the two cameras. We require at least
four point correspondences to perform affine factorization as discussed earlier.
We would now like to process these 15 images using the proposed approach
mentioned in sections 3.1 and 3.2. We cluster these images into two cluster
corresponding to the two cameras and verify the proposed approach with the
prior knowledge regarding the cameras. We are able to identify all the images
captured using first camera - Figure 3 (a, d, e, g, h, j, k, l, m, o) and second
camera - Figure 3 (b, c, f, i, n) respectively.

We select one reference image from each of the clustered image sets of camera
1 and camera 2 and follow the steps in sections 3.3 and 3.4. The resultant
dynamic points projected using the homography matrices (Hi) captured using
camera 1 are shown in Figure 4. Figure 4 shows the curves through different
dynamic objects in the reference image corresponding to camera 1. As we already
know the origin of each dynamic point projected on the reference image we
can order the rest of the images sequentially. We assume that the ordering is
ascending along the curve of motion (in this case, line). The ordered images we
got from camera 1 with respect to a reference are Figure 3 (a, o, d, h, m, i, g,
e, l, j). The resulting ordered images captured using camera 2 with respect to a
reference are Figure 3(b, i, f, n, c) (not shown).

Consider the dataset of 9 images taken using 2 cameras shown in Figure 5.
Applying the proposed approach on this dataset we got the images captured
using camera 1 as Figure 5(a, c, d, f, h) and camera 2 as Figure 5(b, e, g, i). The



Fig. 6. Estimated curve through dynamic points which depict the sequence of captured
images by camera 2.

curve of motion obtained is shown in Figure 6. The ordered images for camera
1 are obtained as Figure 6 (h, a, c, d, f) and camera 2 as Figure 6 (i, b, e, g).
The third dataset consists of 7 images taken using 5 cameras as shown in Figure
7. After applying the proposed approach the result is as follows, Figure 7(a,d) -
camera 1, Figure 7(c,e) - camera 2, Figure 7(b) - camera 3, Figure 7(f) - camera
4 and Figure 7(g) - camera 5 respectively.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 7. (a-g) Images of a dynamic scene captured using five cameras.

All the cameras involved in the capture of a dynamic scene should preserve
the same camera settings such as focus, exposure time, and aperture. If the
number of cameras is large or the perspective views of the cameras are too
different, the relative view points of the cameras may be different from each
other. We may not be able to find sufficient static interest points corresponding
to the same scene points across all the images in the given dataset. This would
make the process of affine factorization challenging. Further, the homography
matrix based dynamic interest point projection may be erroneous due to depth
variation.



5 Conclusion

We have developed a novel approach to identify the cameras which captured a set
of images of a dynamic scene. We could also determine the sequence in which the
images were captured by each camera. The most salient feature of our approach
is that we do not assume any knowledge of camera parameters and dynamics of
objects present in the scene. The approach is fully automated and could serve
as a precursor to existing applications such as photo sequencing. Further all the
cameras are assumed to be hand-held and be avoided performing any type of
pixel-wise registration. We would like to extend the proposed approach to deal
with scenes exhibiting complex motions such as crowd movement and repetitive
motion. We would also like to extend the proposed approach to process images
captured by more number of cameras arranged in different spatial locations.

References

1. Horn, B.K., Schunck, B.G.: Determining optical flow. In: 1981 Technical Sympo-
sium East, International Society for Optics and Photonics (1981) 319–331

2. Basha, T., Moses, Y., Avidan, S.: Photo sequencing. In: ECCV. Springer (2012)
654–667

3. Pickup, L.C., Pan, Z., Wei, D., Shih, Y., Zhang, C., Zisserman, A., Schölkopf, B.,
Freeman, W.T.: Seeing the arrow of time. In: CVPR, IEEE (2014)

4. Dekel, T., Moses, Y., Avidan, S.: Space-time tradeoffs in photo sequencing. In:
ICCV, IEEE (2013)

5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision 60 (2004) 91–110

6. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Foun-
dations and Trends R© in Computer Graphics and Vision 3 (2008) 177–280

7. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In:
ECCV. Springer (2006) 404–417

8. HaCohen, Y., Shechtman, E., Goldman, D.B., Lischinski, D.: Non-rigid dense
correspondence with applications for image enhancement. In: ACM Transactions
on Graphics (TOG). Volume 30., ACM (2011) 70

9. Caspi, Y., Irani, M.: Spatio-temporal alignment of sequences. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 24 (2002) 1409–1424

10. Meyer, B., Stich, T., Magnor, M.A., Pollefeys, M.: Subframe temporal alignment
of non-stationary cameras. In: BMVC. (2008) 1–10

11. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
university press (2003)

12. Triggs, B.: Factorization methods for projective structure and motion. In: CVPR,
IEEE (1996) 845–851

13. Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J.,
Koch, R.: Visual modeling with a hand-held camera. International Journal of
Computer Vision 59 (2004) 207–232

14. Zitova, B., Flusser, J.: Image registration methods: a survey. Image and vision
computing 21 (2003) 977–1000

15. Trefethen, L.N., Bau III, D.: Numerical linear algebra. Volume 50. SIAM (1997)
16. Flach, P.: Machine learning: the art and science of algorithms that make sense of

data. Cambridge University Press (2012)


