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Abstract

Competitive diving is a well recognized aquatic sport in
which a person dives from a platform or a springboard into
the water. Based on the acrobatics performed during the
dive, diving is classified into a finite set of action classes
which are standardized by FINA. In this work, we propose
an attention guided LSTM-based neural network architec-
ture for the task of diving classification. The network takes
the frames of a diving video as input and determines its
class. We evaluate the performance of the proposed model
on a recently introduced competitive diving dataset, Div-
ing48. It contains over 18000 video clips which covers 48
classes of diving. The proposed model outperforms the clas-
sification accuracy of the state-of-the-art models in both 2D
and 3D frameworks by 11.54% and 4.24%, respectively.
We show that the network is able to localize the diver in
the video frames during the dive without being trained with
such a supervision.

1. Introduction
In recent years, automatic interpretation of sports has

gained a keen interest. It is a challenging task especially
when it involves rapid changes and long-term dynamics.
The increase in the processing power and accessibility to
the huge data through broadcasting on digital media has
enabled computer vision and machine learning techniques
to perform several interesting and important tasks in this
area such as object detection, action recognition, and player
tracking.
In this work, we focus on competitive diving, which is a
very popular sport in Olympics. In diving, a person jumps
from a diving platform or a springboard and then performs
some acrobatics before descending into the water. Based on
the acrobatics performed during the dive, diving is classified
into a finite set of action classes which are unambiguous in
nature. These classes are standardized by FINA [1]. The
differences in the acrobatics performed in various classes of
diving are very subtle. The difference arises in the duration
which starts with the diver standing on a diving platform

or a springboard and ends at the moment he/she dives into
the water. This brings about the need of having fine-grained
spatio-temporal representations to capture the subtle differ-
ences between the different classes of dives. Also, these
representations should capture the long-term dynamics of
the video for the task of diving classification.
In recent years, neural network based approaches have
shown very promising results in the task of action recogni-
tion. This success is attributed to the introduction of several
large datasets like UCF101 [21], HMDB51 [14], PoseTrack
[10], Sports1M [11], and Kinetics [12]. These datasets con-
tain videos of several types of actions. The networks are
trained on these datasets to learn the task of action recog-
nition. However, these datasets have strong static bias [16]
which lets the network perform well through learning static
representations while making the dynamics present in the
scene less meaningful for action recognition.
Recently, Li et al. introduced a new dataset, Diving48,
which contains over 18000 video clips of competitive div-
ing actions [16]. It contains 48 classes of diving. They de-
fined each of the 48 diving classes by a combination of four
attributes: takeoff, somersaults, twists, and dive positions
which have 4, 8, 8, and 4 different categories, respectively.
They compared the representation biases of Diving48 with
the existing datasets. They showed that the Diving48 has
much smaller representation bias in comparison to several
standard datasets. This brings about the need of capturing
the scene dynamics in a proficient manner in order to per-
form well on this dataset. Figure 1 shows a few examples
of diving videos from the Diving48 dataset. It can be seen
that the moves are really complex and vary over the time of
flight which makes it necessary to capture the fine-grained
representations in order to capture those subtle movements
along with the long-term dynamics.
Long short-term memory (LSTM) is a variant of recur-
rent neural networks. It overcomes the problem of vanish-
ing/exploding gradients in recurrent neural networks and is
proven to be very successful in several computer vision and
language processing tasks which involves long-term depen-
dencies. They can accumulate the information for a long
period of time. However, over a long period, several re-



Figure 1. Diving48 dataset. Each row shows sample frames of the videos from the Diving48 dataset. The dataset contains 48 classes of
diving. Each of the 48 diving class comprises four attributes: takeoff, somersaults, twists, and dive positions which have 4, 8, 8, and 4
different categories, respectively. It can be seen that the acrobatics performed by the divers are fairly complicated. It can also be noted
that to classify each video to its class, the network should observe the diver through out the video. This brings about the need of having
fine-grained spatio-temporal representations to capture the dynamics of the scene.

dundant information can get accumulated. LSTMs are well
equipped in forgetting the redundant information and learn-
ing new information from the inputs at each time step.
In this work, we propose an attention guided LSTM-based
neural network for the task of diving classification. The
proposed network is divided into four parts: feature extrac-
tor, encoder, attention network, and decoder. In diving, the
classification is based on the actions performed by the diver.
Hence, in this case, not all the spatial locations in the video
frames are required for the classification. However, for the
network to decide which spatial locations are necessary in
each frame of the video, it requires a global context. The
role of the encoder network is to encode all the feature vec-
tors extracted by the feature extractor from the frames of
the videos to provide a global context to the attention and
the decoder networks. Then, the attention network uses the
global context to the generate the attention vectors for each
frame which allows the classifier network to avoid any re-
dundant information. Finally, the decoder network utilizes
the global context and the feature vectors from each image
weighted by the attention weights to obtain the classifica-
tion results.
The major contributions of this work are as follows.

• We propose a novel attention-guided LSTM-based
neural network architecture for the task of diving clas-
sification.

• We show that the attention network learns to focus on

the diver during the dive without being trained with
such supervision.

• We experimentally show that the network learns bet-
ter when the inputs to the attention network and the
decoder network are given in the reverse order as com-
pared to the order in which inputs are given to the en-
coder.

• The proposed network outperforms the state-of-the-
art methods on the Diving48 dataset by 11.54% and
4.24% classification accuracy among 2D and 3D net-
works, respectively.

The remaining part of the paper is organized as follows.
Section 2 covers the literature survey of the relevant works.
Section 3 discusses the proposed network architecture for
the task of diving classification. It also discusses the train-
ing procedure with the implementations details. Section 4
discusses the experiments and the comparisons performed
on the Diving48 dataset. Finally, Section 5 provides the
conclusion for this work.

2. Related Work

Computer vision along with machine learning has re-
cently started to play an important role in sports. Its algo-
rithms have a huge potential in many aspects of sports rang-
ing from activity recognition, motion analysis of cameras



and players, tracking players and objects, automatic annota-
tion of sports footage, event detection, analysis of player in-
juries, spectator monitoring, performance assessment, and
enhanced viewing. Here, we describe some of the recent
works that use computer vision and machine learning for
sports related tasks. Shukla et al. introduced a model that
uses both event-based and excitement-based features to ex-
tract important events and cues from video shots in a cricket
match in order to automatically generate match highlights
[20]. Li et al. introduced a semi-supervised spatial trans-
former network for recognizing jersey number of the play-
ers in soccer matches [15]. Their two stage model first de-
tects the players on the court and then recognize their jersey
number using a convolutional neural network.
Huda et al. proposed a novel method for estimating the
number of players in a soccer match using simulation-based
occlusion handling [25]. They use a bagged tree classifier
to first classify occlusion conditions. The number of play-
ers are then estimated by using the maximum likelihood of
probability density based approach by further classifying
the occluded players. Ullah and Cheikh in [26] proposed a
Directed Sparse Graphical Model (DSGM) for multi-target
tracking in football, basketball, and sprint videos. The
DGSM model finds a set of reliable tracks for the targets
without any heuristics and keeps the computational com-
plexity very low through the design of the graph. Reno et
al. introduced a CNN architecture for detecting ball in ten-
nis games [18].
Hwang et al. proposed a model that combines global and
local information for athlete pose estimation [9]. They first
extract global information using a ResNet-101 based global
network that is trained to regress a heat map representing
parts’ locations. The output features from the global net-
work are then passed to the local network which learns spa-
tial information using position sensitive score maps. Fani
et al. proposed an Integrated Stacked Hourglass Network
(ISHN) for recognizing player actions in hockey videos [5].
The ISHN network has three components. The first compo-
nent is the latent pose estimator, the second transforms la-
tent features to a common frame of reference, and the third
performs action recognition.
Now, we discuss some of the important LSTM based works
for activity recognition and trajectory prediction. Donahue
et al. proposed long-term recurrent convolutional networks
for activity recognition for learning long-term dependencies
[4]. Alahi et al. introduced social LSTM for predicting hu-
man trajectories in crowded spaces [2]. They viewed the
problem of trajectory prediction as a sequence generation
task, where interest is in predicting the future trajectory of
people based on their past positions. Liu et al. proposed
a spatio-temporal LSTM based model with trust gates for
3D human action recognition [17]. Veeriah et al. proposed
a differential recurrent neural network for action recogni-

tion [27]. Fragkiadaki et al. proposed an encoder-recurrent-
decoder (ERD) model for recognition and prediction of hu-
man body pose in videos [6].

3. Proposed Approach
3.1. Long Short-term Memory (LSTM) Network

The LSTM was introduced by Hochreiter and Schmid-
huber [8]. The core of the LSTM is the cell state. It main-
tains its cell state by adding and removing the information
from the cell state at each time step. LSTM has certain
components, called gates, which helps the LSTM to main-
tain its cell state. When the LSTM receives an input, using
the forget gate it decides what information to remove from
the cell state and what to carry forward. Then, the input
gate decides which values in the cell state should be up-
dated and then an input modulation gate generates a vector
which could be added to the cell state. Along with the cell
state, hidden state is also propagated to the next time step,
which is computed using the cell state at the current time
step. LSTM performs the following equations to perform
these tasks [4].

it = σ(Wxixt +Whiht−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 + bf ) (2)

ot = σ(Wxoxt +W l
hoht−1 + bo) (3)

gt = tanh(Wxcxt +Whcht−1 + bc) (4)

ct = ft � ct−1 + it � gt (5)

ht = ot � tanh(ct) (6)

Here, σ, tanh and � stands for sigmoid function, tangent
hyperbolic function, and dot product, respectively. ct ∈ Rp

is the cell state, ht ∈ Rp is the hidden unit, it ∈ Rp is
the input gate, ft ∈ Rp is the forget gate, ot ∈ Rp is
the output gate, and gt ∈ Rp is the input modulation gate.
Wxi,Whi,Wxf ,Whf ,Wxo,Who,Wxc,Whc, bi, bf , b0, and
bc are the learnable parameters. In this work, we have used
a multi-layer LSTM in which multiple LSTMs are stacked
in such a way that the input of the layer l (l > 1) is the
hidden state of the previous layer.

3.2. Model

The proposed model consists of four parts: feature ex-
tractor, encoder, attention network, and decoder.
Feature extractor. We use a convolutional neural network
as the feature extractor to obtain representations for each
video frame. Let {Ii}Nn=1 be the set of frames extracted
from the input video. Here, N is the number of frames ex-
tracted from the video. We pass {Ii}Nn=1 through the fea-
ture extractor to obtain the feature vectors {fi}Nn=1 for each
frame, where fi ∈ Rm, where m is a constant. We use



Figure 2. The proposed network architecture. The proposed model consists of four components: feature extractor, encoder, attention
network, and decoder. I1, I2, . . . , IN are the video frames of the input video which are fed to the feature extractor. f1, f2, . . . , fN are the
features extracted from the N video frames using the feature extractor. We use ResNet (18 layers) as the feature extractor [7]. The encoder,
the attention network, and the decoder are multi-layer LSTM networks. The encoder takes f1, f2, . . . , fN as input, one at each time step.
The attention network takes f1, f2, . . . , fN as inputs in the reverse order as compared to the encoder and generates the corresponding
attention vectors a1, a2, . . . , aN . The decoder takes the dot-product of the attention vectors with their corresponding feature vector as input
in the same order as of the attention network. The decoder outputs the representations corresponding to each video frame which are passed
through a fully connected layer which are further used to perform the classification as shown in Eq. 8. w1, w2, . . .wN are the learnable
parameters.

ResNet (18 layers) as the feature extractor for all the exper-
iments [7]. We remove the classification and global average
pooling layer of ResNet (18 layers) [7] and add a convolu-
tion layer of 1 × 1 kernel size, stride of 1, and 1024 output
feature channels. Then, we apply global average pooling
and obtain 1024 dimensional feature vectors for each input
video frame.

Encoder. Encoder is a multi-layer LSTM network. The
task of the encoder is to provide a global context of the in-
put video frames to the attention network and the decoder.
The encoder takes the feature vector ft as input at the time
step t. The video frames are fed to the encoder in their tem-
poral order. The encoder executes Eq. 1- 6 for each ft at
each time step t. We initialize the hidden and the cell state



Figure 3. The attention network outputs. The figure shows some examples of the attention obtained by the attention network on the
Diving48 video frames. The first and the third row shows video frames of the videos from the test split of the Diving48 dataset. The second
and the fourth row shows the attention map obtained by the attention network. It can be observed that the attention network is able to
localize the diver without being with such supervision.

of the encoder with all zeros. The global context comprises
the hidden and the cell state vectors obtained at the time
step t = N .
Attention network. Attention network is a multi-layer
LSTM network followed by a fully connected layer. The
attention network utilizes the global context provided by
the encoder to generate the attention vectors for each fea-
ture representation {fi}Nn=1. We initialize the hidden and
the cell state of the attention network with the hidden and
the cell state vectors of encoder, respectively, obtained at
the time step t = N . We feed the feature vectors {fi}Nn=1

to the attention network in the reverse order, i.e., first we
feed fN , then fN−1, and so on [22]. The intuition behind
the reversing order is that the encoder has seen fN at the
last time step. Hence, the attention network would be able
to process fN in a much better way since its initial cell state
is most familiar with fN . Similarly, other feature vectors
are given in the reverse temporal order. The attention net-
work takes the feature vector ft at the time step t and gen-
erates an output vector. This output vector is further passed
through a fully connected layer to obtain the attention vec-

tor at, where at ∈ Rm. Here, m is the dimension of the
outputs of the feature extractor.

Decoder. Decoder is a multi-layer LSTM network. The
decoder outputs the representations corresponding to each
video frame which are used to obtain the probability of each
diving class. Similar to the attention network, we initialize
the hidden and the cell state of the decoder with the hidden
and the cell state vectors of encoder, respectively, obtained
at the time step t = N . The input fat to the decoder at the
time step t is computed as shown in Eq. 7.

fat = ft � at (7)

Here, fat ∈ Rm is the vector obtained by taking the dot-
product of the feature vector ft with the attention vector at.
Similar to attention network, we feed the vectors {fan}Nn=1

to the decoder in the reverse order. At each time step t,
we feed fat to the decoder to obtain representation frt ∈
Rp for fat . The decoder outputs the set of representations
{frn}Nn=1 which are passed through a fully connected layer
fc to obtain {ôn}Nn=1 which are further used to perform the



Network Framework Input Pre-training Accuracy (%)
R(2+1)D [24, 3] 3D RGB None 21.4
C3D [23, 16] 3D RGB Sports1M (actions) 27.6
R(2+1)D [24, 3] 3D RGB Kinetics (actions) 28.9
Bertasius et al [3] + R(2+1)D [24] 3D RBG+Pose+DIMOFS Kinetics + PoseTrack 31.4
TSN [28] 2D RGB ImageNet (objects) 16.8
Bertasius et al [3] 2D Pose PoseTrack (poses) 17.2
Bertasius et al [3] 2D Pose+Flow PoseTrack (poses) 18.8
TSN [28] 2D RGB+Flow ImageNet (objects) 20.3
TRN [29] 2D RGB+Flow ImageNet (objects) 22.8
Bertasius et al [3] 2D Pose+DIMOFS PoseTrack (poses) 24.1
Ours 2D RGB ImageNet (objects) 35.64

Table 1. Comparison with the state-of-the-art methods on the Diving48 dataset. Our model significantly outperforms the state-of-the-
art methods in both 2D and 3D frameworks. Note that our proposed network performs better than the models that have been pre-trained
on larger-scale action recognition dataset such as Kinetics and uses just RGB images as input. DIMOFS stands for Discriminative Motion
Features [3].

classification as shown in Eq. 8.

ô =

N∑
n=1

wr
nôn (8)

Here, wr
n ∈ R is a learnable parameter, where n =

1, 2, . . . , N . ô ∈ Rc is passed through a sigmoid layer to
obtain the probability of each diving class.

3.3. Training and Implementation Details

3.3.1 Dataset

Diving48 is an action recognition dataset which contains
18,404 videos clips of competitive diving actions. The clips
cover 48 diving classes which are standardized by FINA [1].
There are 16,067 clips in the training set and 2,337 clips in
the test set. They represent each diving class as a sequence
of four attributes: Take-off, Somersault, Twist, and Flight
position which are divided into 4,8,8, and 4 classes, respec-
tively. In the dataset, it is ensured that the clips from the
same competition are assigned to the same set.

3.3.2 Representation Learning

Instead of directly training the network to identify the div-
ing classes, we train the network to identify the four at-
tributes of the diving classes. The output of the decoder
is passed through four fully connected layers fc1, fc2, fc3,
and fc4 which predict the classes of the four attributes,
i.e., Take-off, Somersault, Twist, and Flight position, re-
spectively. Let {ô1n}Nn=1, {ô2n}Nn=1, {ô3n}Nn=1, and {ô4n}Nn=1

be the outputs of fc1, fc2, fc3, and fc4 for N input video
frames. We train the network using the loss function shown
in Eq. 9.

Lr =

4∑
i=1

S

( N∑
n=1

wi
nô

i
n

)
(9)

Here, S is the cross-entropy loss and wi
n is a learnable pa-

rameter where i = 1, 2, 3, and 4 and n = 1, 2, . . . , N . By
training the network with the loss function Lr, we learn the
representations {frn}Nn=1, which are the output of the de-
coder.
We then remove the fully connected layers fc1, fc2, fc3,
and fc4, and add the fully connected layer fc on the output
of the decoder network. We keep the trained weights of the
network and only train fc to predict the diving class using
the loss function S(ô). Here, S is the cross-entropy loss and
ô is defined in Eq. 8.
We use Adam for the weight update with the initial learning
rate of 10−4, β1 = 0.9, β2 = 0.999, and ε = 10−8 [13].
We apply a dropout of 0.2 on all the fully connected layers.
We use 512 hidden units in the encoder and the attention
networks and 256 hidden units in the decoder network. For
the data augmentation, while training, we resize the shorter
edge of each video frame of the video to 245 pixels and
then, we randomly extract a volume of 224×224×N . The
N frames are picked randomly from the input video follow-
ing a uniform distribution. We have used 64 frames of each
video for training and testing the network, i.e., N = 64.
We implemented our network and performed all the experi-
ments using PyTorch on a system with Intel i7-7820X pro-
cessor, 32 GB RAM, and an Nvidia Titan Xp GPU.

4. Experiments

In this section, we evaluate the effectiveness of the pro-
posed model on the Diving48 dataset. We also evaluate the
effect of the design choices by performing multiple ablation
studies. We show that the attention network is able to local-
ize the diver in the video frames without being trained with
such supervision.



Figure 4. Attention visualization. The figure shows visualization of the outputs of the attention network of our proposed approach on the
video frames from the test split of Diving48 dataset. It can be seen that the attention network is able to localize the diver(s) in the video
frames without being trained with such supervision



Network Accuracy (%)
Without Attention 29.63
With Attention 35.64

Table 2. Clip accuracy with and without the attention network
on the test split of Diving48 dataset. The proposed model with
the attention network performs significantly better.

4.1. Results

We compared our results on Diving48 datasets with the
state-of-the-art methods. Table 1 shows the comparison of
the proposed approach with the state-of-the-art methods.
The proposed model obtains 35.64% classification accuracy
which outperforms the state-of-the-art by 11.54% among
2D networks and by 4.24% among 3D networks. We used
pretrained weights of ResNet (18 layers) trained on Ima-
geNet [19] which is used as the feature extractor in the
proposed model. The encoder, the attention and the de-
coder networks are trained from scratch on the Diving48
dataset. Figure 4 shows the attention maps obtained using
the Eq. 10.

At =
∑
i

aitFi (10)

Here, At is the attention map for the video frame which is
provided as the input to the decoder at time step t, at =
(a1t , a

2
t , . . . , a

m
t ) is the output vector of the attention net-

work and {Fi}mi=1 are the feature maps of the correspond-
ing video frame obtained from the last layer of the feature
extractor [30]. We upsample At to the size of the corre-
sponding input image to overlay it. In Figure 4, it can be
seen that the network is not only able to localize the diver
but also able to follow it through the video without being
trained for such a task. The network is observed to ignore
the static parts of the scene and is also observed to focus on
the divers which is actually relevant to the task.

4.2. Ablation Studies

We perform the following ablation studies to quantify the
effect of choice of components for the network.
Attention Network. We removed the attention network and
trained the remaining networks in the same manner as the
proposed model. In this case, the input of the decoder is the
feature vector ft, instead of vector fat which is obtained by
taking the dot product of the attention vector with ft. Table
2 shows the results obtained by training the proposed model
without the attention network. It can be seen that there is a
drastic decrease in the accuracy which shows its importance
in the proposed model.
Representation Learning. In this study, we checked the

necessity of first learning the representations using the at-
tributes of diving and then learning the diving classifica-
tion. Instead of first learning the representations, we di-

Network Accuracy (%)
Without Representation 32.54
With Representation 35.64

Table 3. Clip accuracy with and without representation learn-
ing on the test split of Diving48 dataset. The proposed model
performs better when first trained on class attributes and then fine-
tuned on the diving classes.

Network Accuracy (%)
Sequence unreversed 32.59
Sequence Reversed 35.64

Table 4. Clip accuracy on the test split of Diving48 dataset. The
proposed model performs better when decoder and attention net-
works are fed with reversed sequence.

rectly trained the proposed model to learn to classify the
diving videos into its classes. Table 4 shows the compar-
ison of the classification accuracy with and without repre-
sentation learning. With representation learning, we obtain
better accuracy which experimentally proves its usefulness.
Unreversed sequence. In Section 3.2, we have mentioned
that the feature vectors {fi}Nn=1 and {fan}Nn=1 are fed to the
attention and the decoder networks, respectively, in the re-
versed order as compared to sequence in which {fi}Nn=1

are fed to the encoder network. In this study, we evaluate
the effect of reversing the sequence. We train the network
by feeding the feature vectors to the encoder, the attention
network, and the decoder in the same sequence. Table 4
compares the accuracy when the decoder and the attention
networks are trained with unreversed sequence with the re-
versed sequence case.

5. Conclusion

We propose a novel attention guided LSTM-based
neural network architecture for diving classification. We
evaluate the proposed approach on a standard competitive
diving classification dataset, Diving48. The proposed
model outperforms the state-of-the-art methods by a
significant margin. We show that the network learns better
when we first train it on the attributes of diving and then
train the classification layer on the diving classes rather
than directly training on the diving classes. We also show
that the attention network localizes the diver in the diving
videos without being trained with such supervision.
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